RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta)								
B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2017 SECOND YEAR [BATCH 2015-18]								
Dat Tim	e: e:	27/05/2017 WATHEMATICS FOR ECONOMICS (General) 11 am - 2 pm Paper : IV Full M	arks : 75					
		[Use a separate Answer Book for each group]						
		<u>Group – A</u>						
An	swe	er any six questions from Question Nos. 1 to 8 :	[6X5]					
1.		Define an Euclidean space. Also define the norm of a vector. Prove that for any two vectors α, β in a Euclidean space $V, \ \alpha + \beta\ \le \ \alpha\ + \ \beta\ $.	3+2					
2.	a)	Find the characteristic polynomial of the following matrix. $A = \begin{bmatrix} 2 & 1 & 7 \\ 3 & 0 & 1 \\ 4 & 2 & 0 \end{bmatrix}$	3					
	b)	Find the linear operator $T : \mathbb{R}^3 \to \mathbb{R}^3$ corresponding to the matrix <i>A</i> [where matrix <i>A</i> is given in Question No. 2(a)]	2					
3.	a) b)	Define the geometric and algebraic multiplicity of an eigen value of a matrix <i>A</i> . If the characteristic polynomial of <i>A</i> is $f(x) = (x-1)^3(x-2)$ then find det <i>A</i> .	2+2 1					
4.		Reduce the following quadratic form to its normal form. $x^{2}+5y^{2}+2z^{2}-4xy-6yz+2zx$.						
		Also find its signature.	4+1					
5.		Verify Cayley-Hamilton theorem for the matrix. $A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 4 & 3 \\ 2 & 1 & 1 \end{bmatrix}$	5					
6.		Find the eigen values and eigen vectors of the linear operator. $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by, $T(x_1, x_2, x_3) = (x_1 + x_2, x_3, x_1 + x_3)$.	5					
7.		Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator such that it rotates every vector in the plane \mathbb{R}^2 by an						
		angle θ , where $0 < \theta < \frac{\pi}{2}$. Does <i>T</i> have any real eigen vector? Explain.	5					
8.		Diagonalize, if possible $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 7 & 2 \\ 2 & 3 & 2 \end{bmatrix}$.	5					
	<u>Group – B</u>							
An	swe	er any one question from Question Nos. 9 & 10 :	[1X5]					

9.	a)	State the fundamental theorem of Linear Programming.	2
	b)	Show that the set of vectors $(2, 1, 4)$, $(1, -1, 2)$, $(3, 1, -2)$ form a basis for E^3 .	3

10. Transform the following Linear programming problem into the standard maximization form. Show the necessary steps.

Maximize
$$z = 2x_1 + x_2 - 6x_3 - x_4$$

Subject to : $3x_1 + x_4 \le 25$
 $x_1 + x_2 + x_3 + x_4 = 20$
 $4x_1 + 6x_3 \ge 5$
 $2 \le 2x_1 + 3x_3 + 2x_4 \le 30$
 $x_1, x_2, x_4 \ge 0$ and x_3 is unrestricted in sign.

Answer any two questions from Question Nos. 11 to 14 :

11. a) Solve the following L.P.P. graphically.

Maximize
$$z = 2x_1 + x_2$$

Subject to : $x_1 - x_2 \ge 0$
 $-2x_1 + 3x_2 \le 6$
and $x_1, x_2 \ge 0$

b) Solve the following linear programming problem by penalty method.

Maximize
$$z = -2x_1 + x_2 + 3x_3$$

Subject to : $x_1 - 2x_2 + 3x_3 = 2$
 $3x_1 + 2x_2 + 4x_3 = 1$
and $x_1, x_2, x_3 \ge 0$
6

12. a) Use two phase simplex method to show that the following linear programming problem has unbounded solution.

Maximize
$$z = 2x_1 + 3x_2 + x_3$$

Subject to : $-3x_1 + 2x_2 + 3x_3 = 8$
 $-3x_1 + 4x_2 + 2x_3 = 7$
and $x_1, x_2, x_3 \ge 0$
8

- b) Define degenerated and non-degenerated BFS (Basic Feasible Solution) of an L.P.P.
- 13. a) Find the dual problem of the following linear programming problem.

Maximize
$$z = x_1 + 4x_2 + 3x_3$$

Subject to $2x_1 + 3x_2 - 5x_3 \le 2$
 $3x_1 - x_2 + 6x_3 \ge 1$
 $x_1 + x_2 + x_3 = 4$

- $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign.
- b) Prove that the dual of the dual is the primal.
- c) What do you mean by linearly independent vectors?
- 14. a) Use duality to solve the following problem.

Maximize
$$z = 2x_1 + 3x_2$$

Subject to $-x_1 + 2x_2 \le 4$
 $x_1 + x_2 \le 6$
 $x_1 + 3x_2 \le 9$
and $x_1, x_2 \ge 0$

8

4

2

6

2

2

[2X10]

5

- b) What do you conclude on nature of solution:
 - (i) for primal, if primal has feasible solution but dual has no feasible solution?
 - (ii) for dual, if primal has no feasible solution but dual has feasible solution?

<u>Group – C</u>

Answer any two questions from Question Nos. 15 to 19 :

15. Consider the following game where player I has two possible strategies – Up and Down and player II has two possible strategies – Left and Right.

		Left	Right	
Player I	Up	40, -40	50, -50	
I layer I	Down	90, -90	10, -10	

Player II

Find the Nash Equilibrium of the game.

16. Suppose there are two firms in an Oligopolistic market facing the market demand function:

$$P(Q) = \alpha - Q \quad \text{if } Q \le \alpha$$

= 0 if $Q > \alpha$ where $Q = q_1 + q_2$

With q_1 the output of firm 1 and q_2 the output of firm 2. Both the firms face the same marginal cost 'e'. Find out the equilibrium values of output of the firms if:

(i) Both the firms choose their output simultaneously

(ii) Firm 1 has the option to set its output earlier.

17. Find out the subgame Perfect Nash Equilibrium of the following game:

Answer any one question from Question Nos. 18 & 19 :

- 18. Show that in a two person zero sum game there is always a Nash Equilibrium in mixed strategies.
- 19. a) Distinguish between a Normal form representation of a game and extensive form representation of a game.
 - b) Compare and contrast between dominant and dominated strategies using appropriate examples.
 - c) Define the concept of Nash Equilibrium in mixed strategies. How is the definition modified in the context of sequential games?
 2+2

- × -----

(3)

5

[2X5]

21/2+21/2

10

3

3

[1X10]